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Introduction

The synthesis and secretion of gonadotropins (follicle 

stimulating hormone, FSH, and luteinizing hormone, LH), 

are restricted to the same cells called gonadotropes in re-

sponse to several extracellular signals and physiological re-

quirements. Various investigations have revealed that the 

gene expression of three subunits of gonadotropin express-

ing common regulatory factors are involved under different 

controls. Several approaches have so far succeeded in con-

firming the molecular mechanisms and transcription factors 

governing basal and cell-specific expressions of the  glyco-

protein hormone α subunit (α-GSU) and LHβ genes 

[2-6], but relatively little knowledge has been accumulated 

about the molecular mechanisms regulating FSHβ gene ex-

pression [7-12]. More recently, we have found for the first 

time that one of the Fd2 binding proteins [13] is the pitu-

itary specific transcription factor, Prophet of Pit-1 (Prop-1) 

[1]. Since this factor is the gene responsible for an inherited 

defect in the dwarf mouse, Ames [14] and a combined pitu-

itary hormone deficiency (CPHD) with hypogonadism [15, 

16], our findings provide a novel approach and breakthrough 

to a better understanding of the control mechanisms not 

only for FSHβ gene expression but also for the etiology of 

dwarf/CPHD.

In this study, we demonstrated that Prop-1 binds to the 

AT-rich sequence of Fd2, resulting in transactivation of the 

FSHβ gene. RT-PCR of pituitary ontogeny demonstrated 

that the transcripts of Prop-1 gene persist throughout the 

fetal and postnatal periods

Materials and methods

１）Sequence analysis

Previously cloned porcine Prop-1 cDNA [1] was prepared 

from E. coli by the alkaline mini-preparation method. The 

fluorescence labeled dye-terminator reaction was employed 

using the Big Dye terminator system (Applied Biosystems, 

Foster City, CA), according to the instruction manual.
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２）Electrophoretic mobility shift assay (EMSA)

Construction of porcine Prop-1 cDNA in the pET32a 

vector (Novagen, Darmstadt, Germany) and the production 

and isolation of recombinant Prop-1 are described in our 

previous paper [1]. FAM-labeled DNA fragments were pro-

duced by PCR using FAM-labeled oligonucleotide 5’-prim-

er. The binding reaction mixture included 100 fmol of FAM-

labeled probe DNA (10  ng)  and 100  ng of porcine 

recombinant Prop-1 with 250 or 2000 ng poly (dI-dC) in 10 

μl of 10 mM HEPES buffer, pH 7.9, containing 0.4 mM 

MgCl2, 0.4 mM DTT, and 50 mM NaCl, and 4% glycerol was 

incubated at 30℃ for 30 min. Samples were then subjected 

to electrophoresis on a 4% polyacrylamide gel as described 

in our previous paper [13].

The consensus sequence of the paired homeodomain 

with Q9 in the third α-helix (PRDQ9), ACTAATT-

GAATTAGC [14], was used as a control for the EMSA of 

Prop-1.

３）Expression vector and reporter vector constructs

Porcine Prop-1 cDNA was ligated into the EcoRI and 

X h o I  s i t e s  o f  a  m a m m a l i a n  e x p re s s i o n  v e c t o r, 

pcDNA3.1Zeo+ (Invitrogen, Carlsbad, CA). Reporter gene 

constructs were generated by ligation of the upstream re-

gions of the porcine FSHβ gene (Fβ3-Basic: －985/+10, ∆

Fβ3-Basic: deletion mutant of Fβ3-Basic from －745 to 

－104 bp, Fβ6-Basic: －103/+10) into pSEAP2-Basic (BD 

Bioscience Clontech) and Fd2, －852 /－746, into pSEAP2-

Promoter (BD Bioscience Clontech) (Fd2-promoter).

４）Cell culture, DNA transfections, and reporter 

gene assays

LβT2 cells, which were established from the mouse pitu-

itary tumor [17] and kindly provided by Dr. P. Mellon, were 

cultured and used for transfection assay as described previ-

ously [1]. Each 5 μl of cultured medium was assayed for 

secreted alkaline phosphatase activity using the Phospha-

Light Reporter Gene Assay System (Applied Biosystems).

５）RT-PCR analysis of Prop-1 expression during 

porcine ontogeny

Total RNAs were extracted from the porcine anterior pi-

tuitaries of German Landrace pigs with intact gonads of 

both sexes collected at fetal days (f40, f50, f65, f82, f95 and 

f110), postnatal days (p8, p60, p160 (prepubertal), and 

p230 (sexually mature)) [18].

Specific primer sets for porcine Prop-1 and cyclophilin A 

were synthesized as follows; Prop-1 forward 5’-CTA-

CAGAAACCTCTCTGGCGTAGG-3’, and reverse 5’-TT-

GCTTCCTCTGCTTAGCTCTGCG-3’, and cyclophilin A 

forward 5’-TGGTGACTTYACACGCCATAATG-3’, and re-

verse 5’-ATTCCTGGACCCRAAACGCTCC-3’. Amplifica-

tions and analysis on agarose gel (2%) were described pre-

viously [18].

Results

１）Nucleotide sequence of Prop-1

The nucleotide sequence of the clone revealed the entire 

sequence of 966 bp, including the open reading frames of 

681 bases of 226 amino acids (DDBJ accession no. 

AB187272). Fig. 1 shows the predicted amino acid se-

quence of porcine Prop-1, consisting of 226 amino acids by 

alignment with the known amino acid sequences of other 

mammalian Prop-1s. The central DNA-binding HD and 

Fig. 1. Comparison of amino acid sequences of Prop-1. Amino acid sequence of porcine Prop-1 was compared with those 
of human, rat and mouse. Each amino acid identical to that of porcine Prop-1 is indicated by a hyphen (-), and 
open spaces represent gaps to optimize homology. Homeodomain is underlined.
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carboxyl terminus of the activation domain [14] were re-

spectively well and moderately conserved, while the amino 

terminus of the inhibitory domain showed a considerable 

divergence.

２）In vitro binding assay by EMSA

To confirm the binding of Prop-1 to Fd2, EMSA was car-

ried out using 5 subfragments of Fd2 (Fd2-1~Fd2-5) de-

signed to overlap each other. As seen in Fig. 2, PRDQ9 

showed a single shift band even in the presence of 250 ng of 

poly (dI-dC). Fd2-1, -2, and -3 exhibited shift bands and 

binding was not prevented by 2000 ng of poly (dI-dC). In 

contrast, Fd2-4 showed a shift band that was lost following 

2000 ng of poly (dI-dC) (data not shown). In addition, 

Fd2-1, -2, and -3 mainly showed two shift bands, and 

Fd2-4 a single one, while no binding at all was observed 

only in Fd2-5, which is not AT-rich.

３）Transcriptional activation of porcine FSHβ gene 

by Prop-1 in LβT2 cells

Transfection of pSEAP2-Basic and pSEAP2-Promoter 

with or without expression vectors of porcine Prop-1 

showed similar expression level of SEAP gene as that in 

LβT2 cells (Fig. 3), indicating the absence of endogenous 

activation by unexpected regulatory elements present in 

the vector construct. The expression level did not increase 

following the transfection of Fd2-Promoter, indicating that 

the SV40 promoter did not work properly in combination 

with Fd2. Reporter vectors of Fβ3-Basic, ΔFβ3-Basic, 

and Fβ6-Basic as well as the transcriptional activity of 

Prop-1 were examined. Unlike Fβ6-Basic, Fβ3-Basic and 

ΔFβ3-Basic showed a significant activation (P<0.01) of 

2.2-fold and 2.5-fold, respectively, by cotransfection with 

the expression vector of porcine Prop-1.

４）RT-PCR analysis of Prop-1 gene expression 

during porcine pituitary ontogeny

RNAs prepared from fetal and postnatal porcine anterior 

pituitaries of both sexes were observed during all periods 

examined for both genders, though some changes and sex 

differences were detected (Fig. 4). The level of Prop-1 ex-

pression in male fetuses decreased temporally at f82 and 

f110, and showed a slight postnatal increase. In females, the 

amounts of Prop-1 transcript kept almost similar levels 

with no marked change during the fetal period. Interesting-

ly, the postnatal expression level in females increased mark-

edly.

Fig. 2. Electrophoretic mobility shift assay. Binding between recombinant Prop-1 and FAM-labeled Fd2 subfragments was 
separated on a 4% polyacrylamide gel followed by visualization with a fluorescence viewer. Composition of each 
binding mixture is listed above the electrophoretic pattern. Paired homeodomain response element (PRDQ9), AC-
TAATTGAATTAGC [14], was used as a control for EMSA.

Prop-1 - + + - + + - + + - + - + - +
poly(dIdC) (ng) 250 250 2000 250 250 2000 250 250 2000 250 250 250 250 250 250

Fd2-1 Fd2-2 Fd2-3 Fd2-4 Fd2-5 PRDQ9

250

CTCCAGCCAAGGAGCTTAATTAATTAATAAGCTTA

TAATTAATAAGCTTAATTAATTGCTCAATT

ATTAATTGCTCAATTAATAAATATTTG TTAAATCAAT

TGTTAAATCAATCTCAGTTTCCATGGAGCT

CTCAGTTTCCATGGAGCTCATAGTCTACTGGGAGA

-852 Fd2-1: -852/-818

Fd2-2: -832/-803

Fd2-3: -817/-781

Fd2-4: -792/-763

Fd2-5: -780/-746 -746

TAATTAATAAGCTTAATTAATTGCTCAATT
Fd2-2: -832/-803

Fd2-3: -817/-781
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Discussion

In this study we demonstrated that Prop-1 acts as a tran-

scription factor for the FSHβ gene by binding to the multi-

ple binding sites of an AT-rich region about －800 bp up-

stream of the porcine FSHβ gene. In addition, RT-PCR 

revealed a continuous Prop-1 gene expression during pitu-

itary organogenesis, and an elevated expression postnatally, 

indicating that Prop-1 participates in pituitary development 

by acquiring a capacity for hormone production and main-

taining the mature pituitary function.

Our examination of sub-fragments of Fd2 showed that 

Prop-1 binds to four of five of them (Fig. 2). It is notewor-

thy that the binding of Prop-1 showed two shift bands, one 

of which corresponded to the shift band of PRDQ9 known 

to be bound with two molecules [14], indicating a binding of 

one or two Prop-1 molecules. In addition, these sub-frag-

ments are AT-rich and contain a core motif TAAT/ATTA of 

the binding site for homeodomain transcription factor [19], 

except for Fd2-4, which has no core motif and shows only a 

weak binding affinity.

Transfection assay of LβT2 cells showed a significant 

transcriptional activation of the SEAP gene (Fig. 3). It is 

noteworthy, that the fusion of Fd2 to the SV40 promoter did 

not work, whereas the region －100 bp upstream of porcine 

FSHβ gene clearly acted as a promoter for transcriptional 

activation by Fd2, indicating the importance of the combina-

tion of the endogenous promoter with Fd2. In addition, Fd2 

functioned as a cis-acting element in both Fβ3-Basic and ∆

Fβ3-Basic, indicating its enhancer activity.

Prop-1 has been an indispensable transcription factor for 

the development of Pit-1 lineage hormone-producing cells 

[14]. During the ontogeny of murine Prop-1 gene expres-

sion, the Prop-1 transcript could first be detected as early 

as embryonic day 10 (e10) when Rathke’s pouch is devel-
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Fig.3. Transcriptional activation of FSHβ gene by Prop-1 in LβT2 cells. Porcine Prop-1 cDNA in pcD-
NA3.1+ vector (closed bar) or pcDNA3.1+ vector alone (open bar) was cotransfected with 
pSEAP2-Basic, pSEAP-Promoter, Fd2-Promoter, Fβ6-Basic, ∆Fβ3-Basic, and Fβ3-Basic vec-
tors into LβT2 cells. After 48-h incubation, an aliquot of cultured medium was assayed for se-
creted alkaline phosphatase activity. Each activity was normalized using that obtained from co-
transfection of pcDNA3.1+ vector alone with pSEAP2-Basic. Asterisks show a significant 
difference (P<0.01) compared with the values with Prop-1-pcDNA3.1 and pcDNA3.1+ vector 
alone.
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Fig. 4. Ontogeny of porcine Prop-1. Total RNAs prepared from fetal 
and postnatal porcine pituitaries of both sexes were analyzed 
by RT-PCR. Amounts of cDNA sample, which produce the 
same amounts of PCR product for cyclophilin A (shown in 
lower panel), were subjected to PCR reaction for Prop-1.
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oping. Prop-1 gene expression reached its maximum level 

by e12, followed by a decline to an extremely low level by 

e14.5 with the distribution of the dorsal/ventral gradient 

[14]. During anterior pituitary development, the differentia-

tion of hormone-producing cell types takes place in a tem-

poral sequence in distinct regions. In the murine anterior 

pituitary, both LH- and FSH-producing cells finally appear 

last of all at e16.5 and e17.5 in the ventral region where the 

expression level of Prop-1 is low [20]. Thus, a spatially and 

temporally unique expression of Prop-1 at an early stage is 

essential for the determination and differentiation of pitu-

itary hormone-producing cells. However, we demonstrated 

by RT-PCR of porcine pituitary ontogeny that the Prop-1 

gene is expressed throughout the fetal (from f40 through f110) 

and postnatal periods. We have also observed that Prop-1 

mRNAs are present at high levels in the pituitary tumor-

derived cell lines LβT2 and LβT4 (unpublished observa-

tion). Our data suggested that Prop-1 might participate in 

the development of hormone-producing cells up to the 

birth and in the control of gene regulation of pituitary hor-

mones during the postnatal period.

In this study, we have demonstrated that Prop-1 is a 

transcription factor for FSHβ gene. It is known that com-

bined pituitary hormone deficiency (CPHD) caused by a 

defective Prop-1 gene is accompanied by hypogonadism as 

well as by a defect in Pit-1-dependent lineage cells. There-

fore, the present finding provides a novel insight into our 

understanding of CPHD defects.

In summary, we have confirmed the function of Prop-1 in 

regulation of the FSHβ gene, its marked presence in post-

natal pituitaries, and its role in developing porcine fetal pi-

tuitaries, suggesting that Prop-1 is involved in the pituitary 

function in addition to the determination of cell lineages 

that produce pituitary hormones. Finally, the present re-

sults also provide new information for an improved under-

standing of CPHD.
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